钙原子的双电子激发自电离光谱*

张 森 梅式民 徐云飞

(浙江大学物理系)

提 要

用三步激发方法,通过 $3d^2$ $^{8}P_0$ 价态得到了 3dnp 和 3dnf, J=1 系列的 70 多个双电子激发自电离能 级,并讨论了这些光谱线的归属。

关键词: 双电子激发,自电离态,量子亏损。

一、引 盲

对碱土金属原子自电离态的实验研究,早期使用紫外单光子吸收方法^(1,3)。70年代后期以来,Cooke、Gollagher等采用孤立原子实模式分步激发方法,对Ba、Sr等碱土金属自电离态光谱作了进一步的观察和分析^[3]。与紫外单光子吸收方法比较,具有明显的优点^[4]。但是,由于孤立实模式第三步激发实电子是从 ms 基态至 mp 第一激发态,在通常使用的染料激光器调谐范围内,每次波长扫描只能得到一个自电离谱线,并且使实电子激发到高 l 态受到限制。

60 年代后期 Newson 等人^[5]开始对 Ca 原子自电离光谱进行了研究。 Brown 等用紫外 单光子吸收方法测量了 3dnp 和 3dnf 的 ¹P₁、⁸P₁和 ³D₁ 系列自电离态光谱^[2], Scott 等计算 了 3dnp、3dnf 和 4pns、4pnd 等低 n 自电离态的光激发截面和线型^[6]。但是,由于 CaII 的 4s 至 4p 实电子跃迁对应的波长在紫外区,使用通常的染料激光器用孤立实模式分步激发方法 观察 Ca 原子自电离态光谱发生困难。 为了用分步激发方法实验测定 Ca 原子的自电离光 谱,本文通过 Ca 原子光学激发的 3d² ³P₀ 价态,第三步激发使用 7000Å 附近的可调谐激光, 得到了 3dnp 和 3dnf, J=1 双电子激发自电离态系列光谱,测定结果和 Brown 等用单光子 吸收方法测得的结果有一定的差异。

二、实 验

实验系统的示意图如图 1 所示。Nd: YAG 脉冲激光器输出的倍频和三信频光经分束后 分别泵浦三台染料激光器,其中第一、二束染料激光波长分别为 $\lambda_1 = 4227.9$ Å 和 $\lambda_2 = 4020.6$ Å,用以两步激发 Ca 原子从 $4s^2$ $1S_0$ 基态经 4s4p $1P_1$ 态至 $3d^2$ $3P_0$ 价态^[7],而第三束染料激光 波长 λ_6 在 6930 Å ~7280 Å 范围内扫描, 微发一个 3d 电子至更高的激发态,得到 3dnp 和 3dnf, J = 1 里德堡系列,其能量高于 4s $^2S_{1/2}$ 电离限,为自电离态。

收稿日期: 1988年10月17日; 收到修改稿日期: 1989年3月17日

^{*} 国家自然科学基金资助的课题。

Fig. 1 Schematic diagram of the experimental arrangement

1-Nd: YAG laser; 2-third harmonicgenerator; 3-black box;
4, 5, 6-dye lasers; 7-vacuum chamber; 8-electron multiplier;
9-oscilloscope; 10-boxcar averager; 11-X-Y recorder; 12-F-P etalen; 13-photodiode; 14-gate integrator; 15-hollow cathode lamp; 16-DC voltage supply; 17-DC voltage supply;
18-pulse voltage supply; A-atomic beam; S-switch; L-lens; M-mirror; BS-beam splitter

三束激光的脉冲宽度均小于 10 ns, 重复率为 10 pps, 方向与原子束接近正交, 其中第三 束激光延迟 10 ns 到达作用区, 以避免可能产生的其他多步激发过程。作用区在相距为 1 cm 的平行板之间, 由自电离态衰变至 4sel 产生的 Ca 离子由加在平行板上的脉冲电压收集, 电 压脉冲宽度 40 ns, 幅度为 70 V, 较激光脉冲延迟 0.5 μs, 以保证激发过程在零电场中进行, 避免斯塔克效应的影响。 被收集的离子通过上极板上的网孔进入电子倍增器, 倍增后的电 离讯号经 Boxear 积分平均后由 X-Y 记录仪记录。

第三束激光的波长标定用空心阴极灯中的氛原子光电流谱,并用法布里--珀罗标准具的 干涉谱作为波长分度。波长 λ。扫描时,利用三笔 X-Y 记录仪把三种谱线同时绘出。

三、双电子激发自电离光谱

为便于和已有的测量与计算结果比较,仍用 LS 耦合符号。按选择定则,第三步由 3d² ³P₀ 价态激发一个 3d 电子,应使 3dnp 和 3dnf 的 ³P₁ 和 ³D₁ 共四个系列得到布居。实验 光谱如图 2 所示,图中上部为法布里-珀罗标准具的干涉谱,中间为氖原子的光电流谱*。

由于光谱图中包含了四个自电离里德堡系列,且组态混合又使部分单态谱线同时出现, 这就使各谱线的归属较难鉴别。但是,由图2可见,在n值较小的一端,谱线强度和线型有

^{*} 各光电流谱线对应的波长值由文献[8]得出,并已折算为真空中波长,在图中标注。

着明显的差异,这种差异反映了不同系列组态的光激发截面和能级宽度的不同^[71]。因此,我 们以低能量端的谱线强度、线型、间距的改变以及量子亏损的大小为依据,与文献[2]中给出 的测量结果对照,对能量小于 62760 cm⁻¹ 的谱线,给出了对应的组态。对较高能量的谱线, 由于归属实难确认,仅给出能量值。计算中取 $3d^2 P_0$ 态的能量值为 48524.13 cm^{-1(9]} 并分别 按 $3d^2 D_{3/2}$ 电离限(62956.10 cm⁻¹)和 $3d^2 D_{5/2}$ 电离限(63016.93 cm⁻¹) 计算各系列能级的 量子亏损值,从同一系列各能级的量子亏损的合理变化,可以确定得出的四个自电离系列均 收敛于 $3d^2 D_{3/2}$ 电离限。表 1 中给出的量子亏损值是按 62956.10 cm⁻¹ 电离限计算的*。

3dnf³P₁ 谱线在图 2 中以"〇"号标志。这一系列谱线较窄,其线型与文献[6] 中给出的 计算结果及文献[2] 中的测量结果一致。为使量子亏损大于零,表 1 中给出的 3dnf³P₁ 组态 的 n 值为文献[2] 中给出的 n 值加 1。在表 1 列出的测量结果中,3d18f³P₁ 和 3d19f³P₁ 的

 \bigcirc -3dnf ³P₁ series, \triangle -3dnf ³D₁ series, \times -3dnp ³D₁ series, \square -3dnp ⁸P₁ series

configuration energy(cm ⁻¹) quqr		quqntum	configuration	energy(cm ⁻¹)	quantum
		defect*			defect*
3d14f ³ P1 3d15f ³ P1 3d16f ³ P1 3d16f ³ P1 3d17f ³ P1 3d19f ³ P1 3d20f ³ P1 3d20f ³ P1 3d21f ³ P1 3d22f ³ P1 3d22f ³ P1 3d22f ³ P1 3d22f ³ P1 3d24f ³ P1	62312.23 62402.43 62472.16 62533.49 62584.33 62623.63 62653.88 62683.78 62711.53 62729.55 62749.18	0.945 0.922 0.942 0.886 0.819 0.832 0.945 0.926 0.818 0.991 0.971	3d13f 3 _D 3d14f 3 _D 3d14f 3 _D 3d15f 3 _D 3d16f 3 _D 3d17f 3 _D 3d17f 3 _D 3d18f 3 _D 3d19f 3 _D 3d20f 3 _D 3d21f 3 _D 3d21f 3 _D 3d22f 3 _D 3d23f 3 _D 3d23f 3 _D	62279.50 62375.06 62453.68 62515.97 62572.75 62616.93 62641.04 62675.37 62706.97 62720.62 62743.11	0.265 0.277 0.221 0.210 0.235 0.013 0.337 0.229 0.013 0.413 0.298
3d18p 3D1 3d19P 3D1 3d20p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1 3d22p 3D1	62539.07 62588.18 62627.99 62660.59 ? 62713.87 62735.97 62756.51	1.779 1.730 1.712 1.730 1.716 1.673 1.552	$\begin{array}{c} 3d15P & 3P \\ 3d16P & 3P1 \\ 3d16P & 3P1 \\ 3d17p & 3P1 \\ 3d18p & 3P1 \\ 3d20p & 3P1 \\ 3d20p & 3P1 \\ 3d21p & 3P1 \\ 3d22p & 3P1 \\ 3d22p & 3P1 \\ 3d22p & 3P1 \\ 3d22p & 3P1 \\ 3d24p & 3P$	62345.47 62432.90 62501.50 62556.51 62602.83 62641.04 62665.07 62695.29 62720.62 62743.11	1.549 1.518 1.463 1.428 1.375 1.337 1.582 1.488 1.413 1.302

Table 1 Measured levels for the 3dnf ${}^{3}P_{1}$, 3dnf ${}^{3}D_{1}$, 3dnp ${}^{3}D_{1}$ and 3dnp ${}^{3}P_{1}$ series of Ca

* converge on the 3d ${}^2\mathrm{D}_{3/2}$ limit

* 各表中给出的实验结果为独立进行 8 次测量的平均值, 各次测量值之间的偏差除个别能级小于 1.5 cm⁻¹ 外, 一 般均小于 1 cm⁻¹。

能量值分别与文献[2]中的结果相差 5.42 cm⁻¹ 和 6.61 cm⁻¹。在本文的光谱图上,这两条谱 线与本系列其他谱线线型一致,量子亏损值接近,位置分布基本符合收敛于 3d $^{2}D_{3/2}$ 电离限 的规律,因此是可以确认的。3d22f $^{3}P_{1}$ 的能量值和文献[2]中的结果相差 4.28 cm⁻¹,虽然其 邻近的谱线能量 E = 62706.97 cm⁻¹与文献[2]接近,但从谱线位置(量子亏损值)判断,我们 仍取表 1 中给出的谱线能量值,而认为其邻近的谱线属于 3dnf $^{3}D_{1}$ 系列。其余谱线对应的 能量值与文献[2]接近。

 $3dnf {}^{3}D_{1}$ 谱线在图 2 中以" \triangle "号标志。这一系列谱线较宽而高度较低。在文献[2]中给出的 $3d16f {}^{3}D_{1}$ 、 $3d17f {}^{3}D_{1}$ 和 $3d18f {}^{3}D_{1}$ 的能量值处,图 2 上无对应的谱线,根据线型和间距判断,我们取其对应谱线的能量值如表 1 所示,它们与文献[2]相差分别为-4.09 cm⁻¹、7.07 cm⁻¹和 6.18 cm⁻¹。由图 2 可见, $3d17f {}^{3}D_{1}$ 和 $3d18f {}^{3}D_{1}$ 线型与本系列其他谱线线型一致, $3d16f {}^{3}D_{1}$ 由于讯号较小,线型不够清晰,但其位置分布和量子亏损值均符合本系列的规律,且其附近无其他谱线,因此也是可以确认的。 $3d19f {}^{3}D_{1}$ 、 $3d22f {}^{3}D_{1}$ 和 $3d23f {}^{3}D_{1}$ 谱线分别与 $3dnp {}^{3}P_{1}$ 系列的 3d20p、3d23p和 3d24p 谱线重合,从图 2 可以看出,这三条谱线相应加宽,其半宽度约 1.5 cm⁻¹,因此测量误差相应加大。在这一系列中, $3d18f {}^{3}D_{1}$ 及 $3d21f {}^{3}D_{1}$ 组态的量子亏损明显减小,显示出与其他通道之间有较强的组态相互作用存在。

3dnp ³D₁ 谱线在图 2 中以"×"号标志。这一系列的低 n 值谱线较弱,但在高 n 端谱线 明显增强,这一结果与文献[2]一致。在 n≤17 以下,以及 n=22 处,谱线讯号被噪声淹埋,难 以确认。

3dnp³P₁ 谱线在图 2 中以"□"号标志。这一系列谱线较强,在图上较易辨认,但部分谱 线对应的能量值与文献[2] 中给出的相差较大。我们认为,用分步激发方法得到的较强的谱 线选择定则对应的终态是确定和可靠的。其中 3d20p ³P₁ 能级位置有一反常移动,对应的量

configuration	energy(cm ⁻¹)	quantum defect*	configuration	energy(cm ⁻¹)	quantum defect*
3d15p ¹ P 3d16p 1P1 3d18p 1P1 3d18p 1P1 3d19p 1P1	62393.10 62478.14 62602.83 62649.31	1.737 1.729 1.721 1.722	$\begin{array}{c} 3d14f & {}^{1}P_{1} \\ 3d16f & {}^{1}P_{1} \\ 3d17f & {}^{1}P_{1} \\ 3d18f & {}^{1}P_{1} \\ 3d18f & {}^{1}P_{1} \end{array}$	62439.82 62578.63 62627.99 62670.75	0.211 0.177 0.203 0.196

Table 2 Measured values of energies for the some 3dnp ${}^{1}P_{1}$ and 3dnf ${}^{1}P_{1}$ states of Ca

* converges on the 3d ${}^{2}D_{5/2}$ limit.

Table 3Measured values of the energy levels up to $62760 \,\mathrm{cm^{-1}}$ for
3dnp and 3dnf, J=1 autoionizing states of Ca

number	energy(cm ⁻¹)	number	energy(cm ⁻¹)	number	energy(cm ⁻¹)
1	62763.20	10	62808.18	19	62840.83
2	62768.06	11	62812.19	20	62842.19
3	62774.33	12	62816.77	21	62845.34
4	62780.52	13	62820.26	22	62849.93
5	62785.31	14	62822.72	23	62851.05
6	62789.81	15	62827.25	24	62853.77
7	62799.81	16	62830.59	25	62855.81
8	62799.32	17	62834.35	26	62857.86
9	62806.20	18	62836.96	27	62860.58

子亏损减小,显示出与其他通道间有较强的组态相互作用。

除以上偶极跃迁允许的系列以外,由于单三态之间的混合,实验也得出了部分¹ P_1 系列谱线,它们与文献[2]中的对应组态列于表 2。其中 3d18p¹ P_1 和 3d17f¹ P_1 谱线 分别与 3d19p³ P_1 和 3d20p³ D_1 谱线重合,从图 2上可以看出对应的谱线加宽。

 $E > 62760 \,\mathrm{cm}^{-1}$ 的谱线能量值列于表 3。

参考文献

- [1] R. W. Ditchburn, R. D. Hudson; Proc. R. Soc., 1960, A256, No. 1284 (May), 53.
 W. R. S. Garton, G.L. Grasdalen et al.; J. Phys. (B), 1968, 1, No. 1(Jan), 114.
 W. R. S. Garton, K. Codling; J. Phys. (B), 1960, 1, No. 1 (Jan), 106.
 J. P. Connerade et al.; Proc. R. Soc. Lond., 1980, A371, No. 1746 (Jun), 295.
 C. M. Brown, M. S. Long. mire et al.; J. Opt. Soc. Am., 1983, 73, No. 8 (Aug), 985
- [2] C. M. Brown, S. G. Tilford; J. Opt. Soc. Am., 1973, 63, No. 11. (Nov), 1454.
- [3] W. E. Cooke, T. F. Gallagher; Phys. Rev. Lett., 1978, 41, No. 24 (Dec), 1648.
 W. E. Cooke et al.; PhysRev. Lett., 1978, 40, No. 3 (Jan), 178.
 S. A. Bhatti et al.; Phys. Rev. (A), 1981, A 24, No. 1 (Jul), 161.
 W. E. Cooke.et al.; Opt. Lett., 1982, 7, No. 2 (Feb), 69.
 N. H. Tran et al.; Phys. Rev. (A), 1982, A26, No. 5 (Nov), 3016.
 S. M. Jaffe, R. Kachru et al.; L Phys. Rev (A), 1985, A32, No. 3 (Sep), 1480.
 胡素芬、张森、陆杰等; «光学学报», 1986, 6, No. 10 (Oct), 902.
 吴璧如、张森、钟建伟等; «物理学报», 1987, 36, No. 4 (Apr), 444.
- [4] 吴璧如,张森、陆杰等;《物理学报》,1986,35, No. 7 (Jul), 956.
- [5] G. H. Newsom, B. W. Shore; J. Phys. (B), 1968, 1, No. 4 (Jul), 742.
- [6] P. Scott, A. E. Kingston, A. Hibbert; J. Phys. (B), 1983, 16, No. 21 (Nov), 3945.
- [7] J. A. Armstrong, P. Esherick, J. J. Mynne; Phys. Rev. (A), 1977, A15, No. 1(Jan), 180.
- [8] 冶金部科技情报产品标准研究所编;《光谱线波长表》,(中国工业出版社,1971),705.
- [9] C. E. Moore; «Atomic Energy Levels», Vol. 1, (N. B. S. Washington 1971), 244.

Doubly excited autoionization spectrum of Ca atom

ZHANG SEN, MEI SHIMIN AND XU YUNFEI (Department of Physics, Zhejiang University, Hangzhou)

(Received 17 October 1988; revised 17 March 1989)

Abstract

More than seventy doubly excited autoionizing states of Ca atom, they belong to the $(3dnp)_{J=1}$ and $(3dnf)_{J=1}$ serieses, have been obtained by using multistep laser excitation via the $3d^{2} {}^{3}P_{0}$ valence state. Attribution for these spectrum lines was discussed.

Key words: doubly excited; autoionizing state; quantum defect.